Stability of Automatic Control Systems

All control modes previously described can return a process variable to a steady value following a disturbance. This characteristic is called “stability.” Stability is the ability of a control loop to return a controlled variable to a steady, non-cyclic value, following a disturbance.

Control loops can be either stable or unstable. Instability is caused by a combination of process time lags discussed earlier (i.e., capacitance, resistance, and transport time) and inherent time lags within a control system. This results in slow response to changes in the controlled variable. Consequently, the controlled variable will continuously cycle around the setpoint value. Oscillations describes this cyclic characteristic. There are three types of oscillations that can occur in a control loop. They are decreasing amplitude, constant amplitude, and increasing amplitude. Each is shown in Figure 10. Decreasing amplitude (Figure 10A). These oscillations decrease in amplitude and eventually stop with a control system that opposes the change in the controlled variable. This is the condition desired in an automatic control system.

Constant amplitude (Figure 10B). Action of the controller sustains oscillations of the controlled variable. The controlled variable will never reach a stable condition; therefore, this condition is not desired.

Increasing amplitude (Figure 10C). The control system not only sustains oscillations but also increases them. The control element has reached its full travel limits and causes the process to go out of control.

Advertisements

One Response to Stability of Automatic Control Systems

  1. Mr. Par says:

    Gread your automatic control system..

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s