Process Time Lags

In the last example, the control of the lube oil temperature may initially seem easy. Apparently, the operator need only measure the lube oil temperature, compare the actual temperature to the desired (setpoint), compute the amount of error (if any), and adjust the temperature control valve to correct the error accordingly. However, processes have the characteristic of delaying and retarding changes in the values of the process variables. This characteristic greatly increases the difficulty of control.

Process time lags is the general term that describes these process delays and retardations. Process time lags are caused by three properties of the process. They are: capacitance, resistance, and transportation time. Capacitance is the ability of a process to store energy. In Figure 9, for example, the walls of the tubes in the lube oil cooler, the cooling water, and the lube oil can store heat energy. This energy-storing property gives the ability to retard change. If the cooling water flow rate is increased, it will take a period of time for more energy to be removed from the lube oil to reduce its temperature.

Resistance is that part of the process that opposes the transfer of energy between capacities. In Figure 9, the walls of the lube oil cooler oppose the transfer of heat from the lube oil inside the tubes to the cooling water outside the tubes.

Transportation time is time required to carry a change in a process variable from one point to another in the process. If the temperature of the lube oil (Figure 9) is lowered by increasing the cooling water flow rate, some time will elapse before the lube oil travels from the lube oil cooler to the temperature transmitter. If the transmitter is moved farther from the lube oil cooler, the transportation time will increase. This time lag is not just a slowing down or retardation of a change; it is an actual time delay during which no change occurs.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s